1.A,B,C,D,E五个人的薪水的median是20000,range不超过50000,其中A,B,C的薪水分别是20000, 40000, 50000,问五个人薪水的平均值可能是多少?
(A) 20000
(B) 32000
(C) 18000
(D) 23000
(E) 31000
2. 一个样本在一个标准方差内的概率是0.68,两个标准方差内的概率是0.95. 一样本,mean=18.6,标准方差是6,求:该样本在6.6-12.6内占多少?
(A) 0
(B) 0.68
(C) 0.27
(D) 0.36
(E) 0.135
3. 一组数平均值9,标准方差2,另外一组数平均值3,标准方差1,问第一组数在(5,11)中的数占总数的比例和第二组数在(1,4)中的数占总数的比例哪个大?
4. 有100个人都对A,B两个人进行评价,每个人只有两种选择,即好或不好,说A不好的有59个,说B不好的有65个,问:同时说AB都好的人数和35比较,哪个大?
5. 两个集合: A=[-1,-2,-3,-4] B=[-2,3,4,5],问B的A次方有多大的概率是正数?
(A) 0
(B) 0.5
(C) 0.625
(D) 0.875
(E) 0.135
参考答案
1.解: median为20000,range为50000,则本题剩下两数的最小值为0,0,最大值为 20000,2000,则平均值最小值为:(0+0+20000+40000+50000)/5 =22000。平均最大值为: (20000+20000+20000+40000+50000)/5=30000。所以五人薪水平均值应在 22000和30000之间。
2.解:本题应加入限制条件:应在正态分布中,否则无解。
Weight指平均值,6.6-12.6 指 -2个方差与 -1个方差之间的概率,所以算发为:(0.95-0.68)/2=0.135
3.解:本题同上题,需在正态分布中讨论,(5,11)中的数是1.5个方差中的数,同样(1,4)中的数也是1.5个方差中的数,所以两组数占总数的比例一样大。
4.解:这种交集的题目列个哥看起来更清楚。所以说AB好的更大交集的35,最小交集为0,所以本题无法判断。
5.解:B的A次方一共有16个,其中只有-2的-1次方和-3次方是负数,所以正数是14个,所以14/16=7/8